To przełom w wykorzystaniu energii słonecznej i wytwarzaniu z niej prądu. Naukowcom z Australii i Stanów Zjednoczonych udało się przekształcić światło niskoenergetyczne w światło wysokoenergetyczne, wykorzystując w tym celu m.in. cząsteczki tlenu. W ten sposób można wytworzyć większą ilość energii elektrycznej z tej samej ilości światła słonecznego.
Obecnie ogniwa słoneczne działają poprzez pochłanianie fal świetlnych i wykorzystywanie energii fotonów do wybijania elektronów z atomów, a tym samym do wytwarzania energii elektrycznej. Różne fale świetlne mają różne poziomy energii, a obecne ogniwa słoneczne nie mogą wykorzystywać długości fal światła o niskiej częstotliwości, np. podczerwieni.
Grupie naukowców z Uniwersytetu RMIT, Uniwersytetu UNSW w Australii oraz Uniwersytetu Kentucky w USA udało się przekształcić światło niewidzialne o niskiej energii w światło wysokoenergetyczne. W ten sposób można wytworzyć większą ilość energii elektrycznej z tej samej ilości światła słonecznego.
– Energia słoneczna to nie tylko światło widzialne – podkreśla prof. Tim Schmidt z Uniwersytetu Nowej Południowej Walii (UNSW) w Sydney. – Widmo jest szerokie, zawiera m.in. światło podczerwone, które daje nam ciepło, i ultrafiolet, który może spalić naszą skórę. Większość ogniw słonecznych, kamer CCD i fotodiod (półprzewodniki, które przekształcają światło w prąd elektryczny – przyp. red.) jest wykonanych z krzemu, który nie reaguje na światło mniej energetyczne niż bliska podczerwień. Oznacza to, że niektóre części widma światła nie są wykorzystywane przez wiele naszych obecnych urządzeń i technologii .
Aby rozszerzyć zakres czułości obecnie stosowanych urządzeń i tym samym zwiększyć wydajność ogniw słonecznych, niezbędna jest konwersja światła w górę, czyli przekształcenie światła o niskiej energii w bardziej energetyczne, widzialne światło, które może wzbudzać krzem.
– Jednym ze sposobów na to jest wychwycenie wielu mniejszych fotonów energii światła i ich sklejenie – wskazuje prof. Schmidt. – Można tego dokonać poprzez oddziaływanie ekscytonów – kwazicząsteczek powstałych z elektronów i dziur elektronowych, które mogą przenosić energię bez przenoszenia ładunku elektrycznego netto – w cząsteczkach organicznych.
Dotychczas jeszcze nigdy nie udało się tego osiągnąć poza krzemową przerwą energetyczną, czyli minimalną energią potrzebną do wzbudzenia elektronu w krzemie do stanu, w którym może on uczestniczyć w przewodzeniu. Naukowcy z ARC Centre of Excellence in Exciton Science, z siedzibą w UNSW w Sydney, wraz ze współpracownikami z Uniwersytetu RMIT i Uniwersytetu Kentucky wykorzystali półprzewodnikowe kropki kwantowe do pochłaniania światła o niskiej energii oraz tlen cząsteczkowy do przenoszenia światła na cząsteczki organiczne. Tym samym tlen umożliwia cząsteczkom organicznym emitowanie światła widzialnego.
– To tylko wczesna demonstracja, a do wyprodukowania komercyjnych ogniw słonecznych potrzeba sporo materiałów do opracowania, ale testy pokazują, że jest to możliwe – podkreśla prof. Schmidt.
Newseria Innowacje